Performance Analysis of Piezoelectric Energy Harvesting in Pavement: Laboratory Testing and Field Simulation

Hao Wang, Associate Professor
Dept. of Civil and Environmental Engineering, Rutgers University

Abbas Jasim, Lecturer
Highway and Transportation Eng. Dept., Mustansiriyah University

Greg Yesner, Postdoc Associate
Ahmad Safari, Professor
Dept. of Material Science and Engineering, Rutgers University
Outline

• Energy Harvesting from Roadway
• Novel Bridge Transducer Design
• Laboratory Testing of Energy Harvester
• Field Performance Simulation and Analysis
• Summary and Findings
Energy Harvesting

- More than 80% of energy production came from fossil fuels (IEA)
- Major renewable energy sources (hydro, solar, wind, waves)
- Energy harvesting is the process of capturing waste energy from natural occurring energy sources and storing it for later use

- Road surfaces are continuously exposed to two phenomena: solar radiation and vehicle loads
 - Considerable source of energy ready to be harvested and converted into useful forms of energy
Advantages and Disadvantages

<table>
<thead>
<tr>
<th>Technology</th>
<th>Energy Output</th>
<th>Advantages /Limitations</th>
<th>Technology Ready Level</th>
</tr>
</thead>
</table>
| Photovoltaic pavement | High | - High Cost
 | - Fragility to resist traffic loading | Low |
| Asphalt solar collector | Medium | - Enhance pavement durability
 | - Cannot be constructed in roads with high traffic | High |
| Geothermal Energy | Medium | - High cost
 | - Depend on geology condition | High | | |
| Thermoelectric generator | Low | - Low energy transfer efficiency | Low |
| Piezoelectric generator | Low/Medium | - Need installation in pavements | Median |
Piezoelectric Materials

• Definition:
 – Piezoelectric materials generate electric charges subjected to mechanical stresses; or change geometric dimensions when electric field is applied, which cause direct and inverse piezoelectric effect
 – Common piezo materials include lead zirconate titanate (PZT) and Polyvinylidene fluoride (PVDF)
Piezoelectric Bridge Transducer

- Piezoelectric coefficient $d_{33} \geq 2 \times d_{31}$
- Tensile stress σ_x is larger than compressive stress σ_z
- Vertical poling and horizontally poling

Math Equations

- $Q = A_{Inner} \sigma_x d_{31} + A_{Outer} \sigma_z d_{33}$
- $Q = A_{Inner} \sigma_x d_{33} + A_{Outer} \sigma_z d_{31}$

Additional Equations

- $V_{gen} = \frac{Q_{gen}}{C_f}$
- $U = \frac{1}{2} Q \cdot V_{gen}$
New Cymbal Transducer Design

32x32x2mm PZT-5X (Sinocera, State College PA). $d_{33} = 750pC/N$

- Conventional Horizontal poling
 - Standard poling
 - Difficult to pole; Low capacitance
 - $700pC/N$
 - $600pC/N \times 7$ segments
 - $4200pC/N$

- Novel transducer

Conventional transducer

Novel transducer
Simulation of Individual Transducer

New design

Traditional design
Effects of Transducer Type and Load

A graph showing the energy (mJ) versus applied stress (MPa) for different transducer types. The lines represent:
- Cymbal Energy of PZT-5H (mJ)
- Bridge Energy of PZT-5H (mJ)
- Cymbal Energy of PZT-5X (mJ)
- Bridge Energy of PZT-5X (mJ)
- Novel Bridge Energy of PZT-5H (mJ)
- Novel Bridge Energy of PZT-5X (mJ)
Stress Analysis of Bridge Transducer

- The deflection and resulted stresses of piezo transducer is dependent on the geometry of transducer and material modulus.
Energy Harvester Module

- 64 transducers
 - 4x4x4
- 1.25 cm aluminum case
- Top and bottom coated with insulating epoxy, side walls lined with nylon
- Copper plates between each layer acts as current collector
 - Wires connected to each plate in parallel
- 17.8×17.8×7.6 cm
Laboratory Testing of Energy Harvester

- Pneumatic loading system
 - Maximum impact loading: 1000 lb
 - Loading frequencies: 0.5-5 Hz

- Voltage was measured across the capacitor in an open circuit

- The power generated from cyclic loading depends on resistance, or impedance of electric load

- The maximum power occurred at an intermediate resistive load was determined using different resistive loads from 50 kOhm to 1 MOhm
Simulation of Piezo Energy Harvester

![Diagram of Piezo Energy Harvester]

Bar charts showing tensile and shear stress with and without a gap for Tresnsducer 1, Tresnsducer 2, Tresnsducer 3, and Tresnsducer 4.
Laboratory and Simulation Results
Piezo Energy Harvesting in Pavement

- Stress and strain from vehicle impact is transferred to piezoelectric transducers through pavement structure.
- The elastic modulus of energy harvester may not match pavement stiffness and affect stress distribution.
- PZT transducer should be protected from mechanical failure.
- The embedment location affects energy output.
3D FE Pavement Modeling

- Non-uniform tire contact stresses in three directions
- Moving loads
- Viscoelastic asphalt layer
- Nonlinear cross-anisotropic behavior of unbound material
- Interface condition
- Temperature gradient

- Validated by field instrumentation measurements in previous studies
Prediction of Pavement Responses

![Diagram of tire and pavement response](image_url)
Compressive Stress on Energy Harvester

Road CL

2.6 m truck width

0.5 m

3.65 m lane width

Road CL

2.6 m truck width

0.6 m

3.65 m lane width

Pavement without energy module

Pavement with energy module
Effect of Embedment Location, Temperature, and Speed
Voltage and Power Under Truck Loading

Graph 1:
- **Voltage (V)**
- **Embedded Depth (in)**
- **Between dual tire spacing**
- **Under tire directly**

Graph 2:
- **Power (mW)**
- **Embedded Depth (in)**
- **Between dual tire spacing**
- **Under tire directly**
Power Outputs at Different Speeds

-200
-175
-150
-125
-100
-75
-50
-25
0
25
50
75
100
125
150
175
200

Embedded Depth (mm)

Power output (mW)

16 km/h
40 km/h
65 km/h
80 km/h
105 km/h

$y = 1.5459x + 32.702$
$R^2 = 0.9016$

$y = 0.6946x + 8.2967$
$R^2 = 0.9391$

$y = 0.267x + 6.1056$
$R^2 = 0.9409$

Below 50.8 mm
Below 101.6 mm
Below 152.4 mm
The relationship between the cyclic stress amplitude (σ) and the number of cycles to fatigue failure (N):

\[
\log(N) = 13 - 0.2\sigma
\]

Tensile failure of PZT material

\[
\log(N) = 11.65 - 0.422\tau
\]

Shear failure of epoxy
Effect of Energy Module on Pavement Responses

- Due to high stiffness of energy harvester, the embedment of energy module in asphalt layer will cause smaller deformation in asphalt layer or on top of subgrade, which is also proved by the FE model results.
- The tensile strains were not significantly affected when energy module was placed in the upper parts of asphalt layers. As energy module was placed close to the bottom of asphalt layer, tensile strains were found smaller as compared the case of intact pavement.
- The effect of energy module on pavement surface displacement was found negligible. It is reasonable to assume that energy module will not affect pavement surface roughness.
Conclusions

• The innovative layered poling and electrode configuration of Bridge transducer increases piezoelectric coefficient and capacitance for higher energy outputs.

• Two different material failure models need to be considered in relation to mechanical failure of Bridge transducer, namely tensile and shear failure.

• Energy harvesting performance is affected by vehicle weights, speed, and embedment location. Therefore, optimum placement strategy in roadway is needed.

• The analysis of strain responses in the pavement suggest that the embedment of energy module will not cause adverse effect on pavement deterioration. Field study is recommended to verify these findings.
Thank You

Questions?

Hao Wang
hwang.cee@rutgers.edu